25개 이상의 토픽을 선택하실 수 없습니다. Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

86 lines
2.9 KiB

  1. import sys
  2. import configparser
  3. import pandas as pd
  4. import torch
  5. from torch import nn
  6. import torch.optim as optim
  7. def main(**param):
  8. L ={"dashscope":1536, "liandong":1024, "zhipu":1024}
  9. answerCache = []
  10. config = configparser.ConfigParser()
  11. config.read("settings.ini", encoding="utf-8")
  12. modelName = param['model']
  13. embeddings = param['embedding']
  14. mode = param['mode']
  15. print(modelName, embeddings, mode)
  16. emName = embeddings + 'embedding'
  17. embedding_config = dict(config.items(emName))
  18. ems = __import__('embeddings.%s' % emName,
  19. fromlist=['embeddings'])
  20. string = 'ems.' + emName.capitalize()
  21. embedding = eval(string)(**embedding_config)
  22. mds = __import__('models.%s' % modelName,
  23. fromlist=['models'])
  24. string = 'mds.' + modelName.capitalize()
  25. model = eval(string)(L[embeddings])
  26. criterion = nn.MSELoss()
  27. optimizer = optim.Adam(model.parameters(), lr=0.001)
  28. if mode == 'train':
  29. train = pd.read_csv('data/train.csv')
  30. for i in range(20):
  31. nloss = 0
  32. for k in range(len(train)):
  33. va = embedding.getem(train.iloc[k]['question'])
  34. vb = embedding.getem(train.iloc[k]['answer'])
  35. if train.iloc[k]['answer'] not in answerCache:
  36. answerCache.append(train.iloc[k]['answer'])
  37. trainTensor = model.prosess(va, vb)
  38. output = model(trainTensor)
  39. # 计算损失
  40. predict = torch.tensor(train.iloc[k]['label']).float()
  41. predict = predict.reshape([1, 1])
  42. loss = criterion(output,
  43. predict)
  44. # 反向传播并更新权重
  45. optimizer.zero_grad()
  46. loss.backward()
  47. optimizer.step()
  48. nloss += loss
  49. if k % 50 == 0:
  50. print(i, k, 'done')
  51. print('one loop done', nloss/len(train))
  52. torch.save(model, 'models/%s.pth' % modelName)
  53. if mode == 'test':
  54. n = 0
  55. model = torch.load('models/%s.pth' % modelName)
  56. model.eval()
  57. test = pd.read_csv('data/test.csv')
  58. for i in range(len(test)):
  59. va = embedding.getem(test.iloc[i]['question'])
  60. vb = embedding.getem(test.iloc[i]['answer'])
  61. testTensor = model.prosess(va, vb)
  62. output = model(testTensor)
  63. if output > 0.5 and test.iloc[i]['label'] == 1:
  64. n += 1
  65. if output < 0.5 and test.iloc[i]['label'] == 0:
  66. n += 1
  67. print(n/len(test))
  68. if __name__ == '__main__':
  69. if not len(sys.argv) == 4:
  70. arg1 = 'cnn'
  71. arg2 = 'dashscope'
  72. arg3 = 'train'
  73. else:
  74. # 从命令行参数中获取参数值
  75. arg1 = sys.argv[1]
  76. arg2 = sys.argv[2]
  77. arg3 = sys.argv[3]
  78. main(model=arg1, embedding=arg2, mode=arg3)